Rethink Wireless is a sample of our full paid service Wireless Watch, click the link below for 4 week FREE trial. Wireless Watch Trial
The European Commission is putting money behind its determination to recapture mobile industry leadership for its own companies in the 5G era. A series of R&D initiatives have recently announced their roadmaps, addressing different aspects of future wireless platforms with the help of EC funds and regional expertise. While many are led by the local giants - Ericsson, Nokia and Alcatel-Lucent/Bell Labs - there are leading roles for external partners too, as seen in Samsung's leadership of the mmMagic consortium.
This is co-funded by the EC's 5G PPP program and is focused on developing technologies which can operate in high frequency bands, from 6 GHz right up to 100 GHz. The aim is to gain deeper understanding of what is realistic in using these promising but often untried areas of the spectrum, and to accelerate standardization of millimetre wave systems.
There are many differences of opinion among mobile players over how important millimeter wave bands will be in delivering additional spectrum capacity for 5G. While some bands, notably 60 GHz, are already in commercial use, the behavior of others has hardly been tested, and some CTOs believe the primary focus should be on squeezing more capacity out of the well understood frequencies below 6 GHz.
Samsung, however, has been a major proponent of moving up the spectrum and has already demonstrated experimental networks which deliver very high speeds in bands such as 30 GHz and 60 GHz. In mmMagic, it is joined by most of its main infrastructure rivals - Ericsson, Alcatel-Lucent, Huawei and Nokia - as well as Intel, Orange, Telefonica and Qamcom; test vendors Keysight and Rohde & Schwarz; and academic partners (Fraunhofer HHI, CEA LETI and IMDEA Networks; universities in Aalto, Bristol, Chalmers and Dresden). mmMAGIC is led and coordinated by Samsung. Ericsson acts as technical manager while Intel, Fraunhofer HHI, Nokia, Huawei and Samsung will each lead one of the five technical work packages.
Chang Yeong Kim, head of digital multimedia and communications R&D at Samsung Electronics, said in a statement that new approaches to implementing mobile communications in bands above 6 GHz "are crucial to realize the envisaged 5G services with diverse and challenging requirements".
mmMagic aims to develop new concepts for mobile access in the 6 GHz to 100 GHz range, including new waveforms, frame structures and numerology; and new adaptive and cooperative beamforming and tracking techniques, to address the specific challenges of millimeter wave mobile propagation. The group envisages that the resulting access technology would feed into the overall 5G multi-RAT platform, which many expect to integrate a range of new and LTE air interfaces.
The two-year mmMagic initiative is one of 19 research projects co-funded by the 5G-PPP. Other recently announced examples include Fantastic-5G, Norma, and Metis II.
by Caroline Gabriel, Research Director
There are some '5G' discussions and claims which are completely legitimate to have in 2015, especially if next generation networks really are to start appearing from 2020. Vendors, operators and research institutes need to identify the areas in which R&D dollars will be best spent, and it is vital for regulators and policy makers that there are some clear directions on how spectrum will be used in future networks.
There are others which are dramatically premature, particularly all the talk of the '5G air interface' in Barcelona at the recent Mobile World Congress, probably the aspect on which fewest parties are in agreement, and which really does have to wait for the 3GPP to kick off activities.
There are interesting projects in this area - for instance, Alcatel-Lucent and Intel are working on the Universal Filtered OFDM air interface, which had its origins in WiMAX, and could be one candidate for the next generation.
Separate air interfaces may be needed to support IoT nodes in lower frequency bands and high bandwidth applications in the 10-100GHz range. Since the official spectrum policies above 6GHz may not be decided until WRC-19, the industry faces the interesting challenge of "designing new air interfaces ahead of when spectrum is released", as Intel put it.
But there is not even consensus on whether a new air interface is needed at all. "I suspect that it will require a new air interface," said Alex Jinsung Choi, head of SK Telecom's corporate R&D center in South Korea, and Eduardo Esteves, VP of product management for Qualcomm, echoed this as both took part in a panel discussion at Mobile World Congress. But Tom Keathley, SVP of wireless network architecture and design at AT&T, told the same session: "I don't think we know at this stage whether a new air interface will be required. I think it will be a bit of time before we can answer that with certainty."
In general, despite all the marketing hype attached to so-called pre-5G demonstrations, Barcelona attendees were firmly focused on the short to medium term and the achievable. But that did not stop a large number of organizations using the event to launch their 5G manifestos, and seek to place themselves and their particular agendas in the driving seat.
Just ahead of the show, the European Commission fronted a paper which set out an inaugural 5G vision based around its previously announced '5G Public Private Partnership' (5GPPP). It stated the issues (the easy bit) and recited the usual mantras - data volumes of 10 terabytes per square kilometer; one million terminals per square kilometer; one-tenth of the energy consumption and one-fifth of the latency of current platforms; cutting network management to 20% of today's costs; data rates of 50Mbps to every user; location services to within a meter. Then it gave itself the familiar, but perhaps unachievable, deadline of five years to solve all that.
The EC received a lot of attention, but there were plenty of other alliances and proposals. Here is Rethink's selection of the ones which are likely to have a real impact on how '5G' pans out:
The IPv6 Forum has launched a new 5G World Alliance, with the lofty aim of achieving "seamless global network interoperability". President Latif Ladid said: "We are talking here about a 5G world where technologies such as an all-IPv6-based M2M, the mobile IoT, mobile cloud computing, SDN, NFV, fringe and tactile internet will converge over fixed and mobile networks to change lives and businesses everywhere." Ladid said the alliance was currently establishing board members and said it would work alongside the ETSI IPv6 ISG to share its findings.
Among the objectives that the 5GWA is looking to achieve are:
- Global harmonization and synergies of the telecom and internet worlds
- The creation of large-scale worldwide interoperable testbeds
- Promotion of end-user empowering applications and global solutions
- Promotion of interoperable implementation of converging and integrated standards
- Developing educational and '5G-ready' programs
- Resolving issues that could create barriers to 5G deployment
4G Americas has signed a memorandum of understanding with the 5GPPP, outlining the basis for cooperation and collaboration between the two organizations. The MoU specifically agrees to share information on basic system concepts for 5G frequencies to support the global regulatory process, and preparation of future global 5G standards by identification of common interest and consensus building.
The NGMN (Next Generation Mobile Networks) Alliance has published a white paper detailing end-to-end operator requirements for 5G, intended to guide the development of future technology platforms and standards. A global team of more than 100 experts contributed to the white paper by developing the consolidated operator requirements. These are summarized predictably enough - "the capabilities of the network need to be expanded to support much greater throughput, lower latency and higher connection density. To cope with a wide range of use cases and business models, 5G has to provide a high degree of flexibility and scalability by design. In addition, it should show foundational shifts in cost and energy efficiency. On the end user side, a key requirement for 5G will be that a consistent customer experience is achieved across time and service footprint. NGMN envisages a 5G ecosystem that is truly global, free of fragmentation and open for innovations."
Ericsson announced its new '5G for Sweden' research program, involving companies such as Scania and Volvo, as well as several academic and research partners from across the country.
Ericsson said it wanted to develop and roll in ICT solutions into products and services built upon emerging 5G standards. An example of this is work it is doing with Scania, which will examine future transport solutions.
Nokia and Ericsson will collaborate with Korea Telecom on 5G and IoT following the signing of new memorandums of understanding. The first sets up an IoT and LTE-M lab to develop business models aimed at convergence and the automotive industry. This will be on KT premises and will involve all three Nokia business units (Networks, Here and Labs). The second builds on an existing 5G cooperation with Ericsson.
Nokia and NTT Docomo carried out a joint demonstration in Barcelona, of technologies they say will be part of the '5G' networks the pair plan to showcase at the 2020 Olympic Games in Tokyo. They achieved above 2Gbps in the 70GHz band.
China Mobile, NTT Docomo and KT announced that they would conduct a three-way 5G technical collaboration in an attempt to accelerate commercial deployments and drive standardization efforts. They will explore new services and vertical markets enabled by 5G, jointly identify 5G key technologies and prove the validity of system concepts. The operators will also work with global organizations such as ITU, 3GPP, GSMA, NGMN and GTI to facilitate global harmonized spectrum planning and a unified global 5G standard, the companies said in a joint statement.
Subscribe to our Wireless Infrastructure Newsletter